Sharp inequalities between means

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Inequalities between Centered Moments

Inspired by a result of Chuprunov and Fazekas, we prove sharp inequalities between centered moments of the same order, but with respect to different probability measures.

متن کامل

Sharp Inequalities Involving Neuman–sándor and Logarithmic Means

Sharp bounds for the Neuman-Sándor mean and for the logarithmic mean are established. The bounding quantities are the one-parameter bivariate means called the p-means. In this paper best values of the parameters of the bounding means are obtained. Mathematics subject classification (2010): 26E60, 26D07, 26D20.

متن کامل

Sharp Boundary Trace Inequalities

This paper describes sharp inequalities for the trace of Sobolev functions on the boundary of a bounded region Ω ⊂ R . The inequalities bound (semi-)norms of the boundary trace by certain norms of the function and its gradient on the region and two specific constants kρ and kΩ associated with the domain and a weight function. These inequalities are sharp in that there are functions for which eq...

متن کامل

Sharp Jackson inequalities

For trigonometric polynomials on [− , ] ≡ T , the classical Jackson inequalityEn(f )p C r (f, 1/n)p was sharpened by M. Timan for 1<p<∞ to yield n−r { n ∑ k=1 ksr−1Ek(f )p }1/s C r (f, n−1)p where s =max(p, 2). In this paper a general result on the relations between systems or sequences of best approximation and appropriate measures of smoothness is given. Approximation by algebraic polynomials...

متن کامل

A Sharp Double Inequality between Harmonic and Identric Means

and Applied Analysis 3 Theorem 1.1. If p, q ∈ 0, 1/2 , then the double inequality H ( pa ( 1 − pb, pb 1 − pa < I a, b < H ( qa ( 1 − qb, qb 1 − qa 1.8 holds for all a, b > 0 with a/ b if and only if p ≤ 1 − √ 1 − 2/e /2 and q ≥ 6 − √6 /12. 2. Proof of Theorem 1.1 Proof of Theorem 1.1. Let λ 6 − √6 /12 and μ 1 − √ 1 − 2/e /2. Then from the monotonicity of the function f x H xa 1 − x b, xb 1 − x ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2011

ISSN: 1331-4343

DOI: 10.7153/mia-14-55